Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching
نویسندگان
چکیده
منابع مشابه
Enhancement and quenching of single-molecule fluorescence.
We present an experimental and theoretical study of the fluorescence rate of a single molecule as a function of its distance to a laser-irradiated gold nanoparticle. The local field enhancement leads to an increased excitation rate whereas nonradiative energy transfer to the particle leads to a decrease of the quantum yield (quenching). Because of these competing effects, previous experiments s...
متن کاملFluorescence quenching: A tool for single-molecule protein-folding study.
By using titin as a model system, we have demonstrated that fluorescence quenching can be used to study protein folding at the single molecule level. The unfolded titin molecules with multiple dye molecules attached are able to fold to the native state. In the native folded state, the fluorescence from dye molecules is quenched due to the close proximity between the dye molecules. Unfolding of ...
متن کاملInvestigating Molecular Spontaneous Emission Rate Enhancement Close to Elliptical Nanoparticles by Boundary Integral Method
Utilizing boundary integral method (BIM), we investigate molecularspontaneous emission rate enhancement in the vicinity of plasmonic nanoparticles ofelliptical cross section. These types of nanoparticles can considerably enhance themolecule decay rate. The spontaneous emission rate can be modified by altering theaspect ratio of the elliptical nanoparticle, the background refractive index andnan...
متن کاملStochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors.
The 1D quantum confinement of photogenerated excitons in single-walled carbon nanotubes (SWNT) can amplify the detection of molecular adsorption to where single-molecule discrimination is realizable, even from within living cells and tissues. Toward this aim, we present a type 1 collagen film, similar to those used as 3D cell scaffolds for tissue engineering, containing embedded SWNT capable of...
متن کاملVoltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy
The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Physics
سال: 2008
ISSN: 0026-8976
DOI: 10.1080/00268970802002510